momepy.Unique#

class momepy.Unique(gdf, values, spatial_weights, unique_id, dropna=True, verbose=True)[source]#

Calculates the number of unique values within neighbours defined in spatial_weights.

\[\]
Parameters
gdfGeoDataFrame

A GeoDataFrame containing morphological tessellation.

valuesstr, list, np.array, pd.Series

The name of the dataframe column, np.array, or pd.Series where character values are stored.

spatial_weightslibpysal.weights

A spatial weights matrix.

unique_idstr

The name of the column with unique IDs used as the spatial_weights index.

dropnabool (default True)

Don’t include NaN in the counts of unique values.

verbosebool (default True)

If True, shows progress bars in loops and indication of steps.

Examples

>>> sw = momepy.sw_high(k=3, gdf=tessellation_df, ids='uID')
>>> tessellation_df['cluster_unique'] = mm.Unique(tessellation_df,
...                                              'cluster',
...                                              sw,
...                                              'uID').series
100%|██████████| 144/144 [00:00<00:00, 722.50it/s]
Attributes
seriesSeries

A Series containing resulting values.

gdfGeoDataFrame

The original GeoDataFrame.

valuesSeries

A Series containing used values.

swlibpysal.weights

The spatial weights matrix.

idSeries

A Series containing used unique ID.

__init__(gdf, values, spatial_weights, unique_id, dropna=True, verbose=True)[source]#

Methods

__init__(gdf, values, spatial_weights, unique_id)