momepy.Percentiles#
- momepy.Percentiles(gdf, values, spatial_weights, unique_id, percentiles=[25, 50, 75], interpolation='midpoint', verbose=True, weighted=None)[source]#
Calculates the percentiles of values within neighbours defined in
spatial_weights
.- Parameters:
- gdfGeoDataFrame
A GeoDataFrame containing source geometry.
- valuesstr, list, np.array, pd.Series
The name of the dataframe column,
np.array
, orpd.Series
where character values are stored.- spatial_weightslibpysal.weights
A spatial weights matrix.
- unique_idstr
The name of the column with unique IDs used as the
spatial_weights
index.- percentilesarray-like (default [25, 50, 75])
The percentiles to return.
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
This optional parameter specifies the interpolation method to use when the desired percentile lies between two data points
i < j
:'linear'
'lower'
'higher'
'nearest'
'midpoint'
See the documentation of
numpy.percentile
for details.- verbosebool (default True)
If
True
, shows progress bars in loops and indication of steps.- weighted{‘linear’, None} (default None)
Distance decay weighting. If
None
, each neighbor withinspatial_weights
has equal weight. If'linear'
, linear inverse distance between centroids is used as a weight.
- Attributes:
- frameDataFrame
A DataFrame containing resulting values.
- gdfGeoDataFrame
The original GeoDataFrame.
- valuesSeries
A Series containing used values.
- swlibpysal.weights
The spatial weights matrix.
- idSeries
A Series containing used unique ID.
Examples
>>> sw = momepy.sw_high(k=3, gdf=tessellation_df, ids='uID') >>> percentiles_df = mm.Percentiles(tessellation_df, ... 'area', ... sw, ... 'uID').frame 100%|██████████| 144/144 [00:00<00:00, 722.50it/s]