momepy.NeighborDistance#
- momepy.NeighborDistance(gdf, spatial_weights, unique_id, verbose=True)[source]#
Calculate the mean distance to adjacent buildings (based on
spatial_weights
). If no neighbours are found, returnnp.nan
.\[\frac{1}{n}\sum_{i=1}^n dist_i=\frac{dist_1+dist_2+\cdots+dist_n}{n}\]Adapted from [Schirmer and Axhausen, 2015].
- Parameters:
- gdfGeoDataFrame
A GeoDataFrame containing objects to analyse.
- spatial_weightslibpysal.weights
A spatial weights matrix based on
unique_id
.- unique_idstr
The name of the unique ID column used as the
spatial_weights
index.- verbosebool (default True)
If
True
, shows progress bars in loops and indication of steps.
- Attributes:
- seriesSeries
A Series containing resulting values.
- gdfGeoDataFrame
The original GeoDataFrame.
- swlibpysal.weights
The spatial weights matrix.
- idSeries
A Series containing used unique ID.
Examples
>>> buildings_df['neighbour_distance'] = momepy.NeighborDistance(buildings_df, ... sw, ... 'uID').series 100%|██████████| 144/144 [00:00<00:00, 345.78it/s] >>> buildings_df['neighbour_distance'][0] 29.18589019096464